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ABSTRACT 

Several aspects of canopy flow are investigated. The problem of steady flow in a horizontally infinite canopy 
under neutral thermal stratification is treated theoretically. The resulting analytical model is then used as a boundary 
condition for a nonlinear numerical model designed t o  study transition regions near the leading and trailing edges of 
a canopy. 

This model shows a wave effect downstream from a leading edge observed in the field and laboratory. A tendency 
for a splitting of the flow near a windward canopy edge is also brought out. 

1. INTRODUCTION 

Early observations of wind in vegetation-air layers 
revealed a characteristic velocity profile that showed a 
curvature reversal near the top of the vegetation and a 
region of low shear within the layer. 

Agricultural requirements motivated the first quantita- 
tive attempts to model the turbulent transfer in the canopy 
environment. Theoretical contributions by Lemon et al. 
(1963) and Inoue (1963) treated steady-state flow in a 
horizontally homogeneous region The basic premise of the 
work is that there is a destruction of momentum by drag 
forces within the canopy layer and that the deceleration 
may be described by the differential equation 

where r is turbulent stress; p is air density; C is the drag 
coefficient, a function of wind speed and leaf characteris- 
tics; F is leaf area density; U is mean wind speed; and z is 
height. 

Turbulent stress r has been related t o  the mean wind 
field through eddy viscosity hypotheses (Tan and Ling 
1963) and through mixing length arguments (Inoue 1963, 
Cionco 1965). 

Since the early measurements of wind profiles in vegeta- 
tive canopies, the observational interests have developed 
along the lines of: 

1. Equilibrium profiles of mean velocity in different types of 

2. More sophisticated measurements, including turbulence 

3. Diffusion of suspended material in the canopy environment. 
4. Transition zone observations. 
5. Laboratory model simulations. 

canopies. 

spectra. 

Velocity profiles and turbulence intensity in agricultural 
crops are reported by Inoue (1963), Uchijima and Wright 
(1964), and Lemon et al. (1963). Mean wind, turbulence, 
-- 
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and diffusion observations in tree forests have been carried 
out by Baynton et al. (1965), Morton (1968), and Raynor 
(1967). Allen (1968) has calculated mean wind speed 
profiles and turbulence spectra at  various heights in a 
canopy. 

Of very practical interest is the problem of flow in the 
transition regions at  the windward and leeward ends of a 
canopy. This problem has received some attentiop through 
field and laboratory studies, but very little theoretical 
work has been done. Stearns (1964) made mean velocity 
profile observations within an artificial canopy made of 
Christmas trees mounted on a frozen lake. Investigators 
at  Colorado State University at  Fort Collins have gathered 
data from wind tunnel models of canopies and have 
observed transition regions as well. as quasi-equilibrium 
flows. Plate and Quraishi (1965) measured mean speed 
profiles in and above severd simplified canopies. Meroney 
(1968) reports observations of mean velocity, turbulence 
parameters, and concentration of a diffusing gas in the 
vicinity of model canopies. 

A significant effect observed by Meroney in the leading 
edge transition zone is the tendency for the flow to be 
forced upward very near the leading edge and dip down- 
ward farther downstream. This same wave effect was noted 
in the field by Raynor (1967) who studied the diffusion of 
an aerosol tracer at the leading edge of a forest stand. 
Also, Raynor found an increase in the spread of aerosol 
with the forest. Shinn (1968) has assembled some observa- 
tions from a leading edge zone of a deciduous forest and 
calculated horizontal and vertical wind components in the 
trunk space beneath the leaf crown. These estimates show 
the strongest upward component near the top portion of 
the trunk space at  the leading edge. 

A second feature that appears in each of the leading edge 
observations is a local maximum in the horizontal flow 
with the canopy. The velocity throughout the whole 
canopy region decreases into the canopy; but the decrease 
is slower in the lower half, thus giving rise to a weak jet. 
This has generally been ascribed to a splitting of the flow 
around the denser crown region that occupies the upper 
portion of the canopy. This, of course, is a physically 
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plausible explanation; but the phenomenon was also ob- 
served by Yano (1966) in a wind tunnel model consisting 
of simple pegs. In  light of this, it is reasonable to look for 
further mechanisms contributing to the splitting effect. 

The current study is directed toward the steady-state 
problem under neutral thermal stratification with interest 
focused on each of three zones: 

1. A horizontally uniform zone; the mean flow is parallel and 
horizontal. 

2. A leading edge transition zone where turbulence structure and 
mean flow are treated as two-dimensional variables (alongwind and 
vertical). 

3. A two-dimensional trailing edge zone. 

The uniform canopy is treated first, as it provides a 
boundary condition for the transition zone models. A 
model for the uniform canopy is derived from the Reynolds 
equation of motion, making use of mixing length hy- 
potheses and a two-layer interaction hypothesis. The calcu- 
lations for this model can be made analytically. The 
two-dimensional transition zone models are formulated in 
finite-diff erence equations and solved numerically. In  ad- 
dition to the canopy flow that represents an “inner” 
boundary condition, an outer boundary condition is se- 
lected t o  be a characteristic logarithmic velocity profile. 

9. UNIFORM CANOPY MODEL 
Our model for a uniform canopy will be formulaked 

somewhat differently from previous models. We shall con- 
sider two interacting flow regimes. An outer boundary 
layer flow is not unlike that over a flat plate, except that 
the lower boundary condition is determined by continuity 
with the inner regime. The inner or canopy flow is charac- 
terized by a turbulence structure strongly affected by the 
large roughness elements. We shall consider it to be driven 
by the stress applied at  canopy top by the outer velocity. 
The distribution of velocity in the canopy layer then de- 
pends on the turbulence structure within the region and 
the boundary conditions, continuity at  the interface, and 
no-slip at  the ground level. 

The flow in each region satisfies the Reynolds form of the 
momentum conservation equations for an incompressible 
quasi-steady turbulent flow in two dimensions : 

and 

Further, for the uniform homogeneous canopy, we assume 
horizontal parallel flow that is steady and homogeneous. 
Under these conditions, eq (2) and (3) simplify to 

and 
(4) 

Within the framework of the modeling assumptions, we 
can draw some conclusions regarding the pressure dis- 
tribution. When differentiating eq (5 )  with respect to 2, 

Because of x homogeneity, however, the statistical prop- 
erties of the flow are independent of s ;  therefore, the right- 
hand side of eq (6) becomes zero, and 

which yields ap/ax as constant independent of z. Hence, 
as in the case of classical boundary layer flow, the pressure 
gradient of the outer flow is impressed into the canopy 
flow regime. 

A further simplification of eq (4) by the neglect of a 
pressure gradient should be examined. There are two 
sources of pressure gradient effects that come to immediate 
attention. First is the large-scale pressure gradient that is 
the driving force for the flow. The magnitude of the accel- 
eration from this pressure gradient is on the order of 

m.sW2. This results in negligible accelerations for the 
scales of interest. 

Another pressure grsdient effect is operative in non- 
homogeneous regions, such as canopy transition zones 
where the horizontal flow is decelerated. 

From eq (2), it is seen that (8U/dx) < 0 implies (ap/ax) 
>O. This situation occurs in a leading edge transition where 
the horizontal wind component is observed to  decelerate. 
Conversely, at  a downwind transition, (aU/ax) > O ;  and 
the corresponding pressure gradient is negative. Briefly, 
then, the steady-state pressure field will show an increase 
with distance into the canopy. Pressure gradient cannot 
remain positive throughout a broad canopy without in- 
curring unrealistic pressure values. It is reasonable to  
expect dynamic pressure to increase through the transition 
region but to reach a constant value in the equilibrium 
flow regime. 

The details of the pressure variations have yet to be 
explored, but qualitative reasoning and empirical evidence 
suggest a basically smooth, asymptotic approach to the 
downstream constant value. Undoubtedly, there are 
perturbations superimposed on the smooth variation. These 
are related to the wave effect discussed in connection with 
the transition zone model. The simple x dependence of 
pressure suggested for the steady flow differs from the 
nonsteady mechanics. It is likely that time-dependent 
circulations occur when the local pressure buildup results 
in a separation of flow from the wall and consequent 
reversal of direction within the canopy. It is felt that these 
eddies are generally random in position and duration; and 
therefore, their effects do not show in the time-averaged 
or steady case. 

The long downwind extent of the approach to uniform 
pressure conditions suggests that the ideal canopy, free 
of edge effects, may be rare indeed. For the uniform zone 
model, however, we shall consider only ap/ax=O. 
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In  the upper layer, flow is maintained by turbulent and 
viscous shear stresses transferring momentum from the 
free stream flow. The molecular friction term is negligible 
everywhere except in a very thin laminar sublayer adjacent 
to the wall, and the viscous effects can be incorporated 
into a surface roughness parameter. The result is a further 
simplification of eq (4) to an expression for constant 
turbulent stress, ==constant. If the momentum mixing 
length concept is adopted, we ultimately obtain 

dU u* 
dz -Z(z) 
_-- 

where u* is the friction velocity. The total derivative 
notation is used since U=U(z) only. 

Having adopted the momentum mixing length concept, 
we can specify a form for the mixing length Z(z) and inte- 
grate. The boundary layer above a porous surface such as 
a canopy is characterized by &) K z .  However, turbulent 
exchange and mixing length do not vanish at  the canopy 
tor, : 

z 2 h  dU u* 
dz - I o  + k ( z  - h) 
-- (9) 

where I ,  is the value of mixing length at  the interface, 
z=h, and k is von KArmAn’s constant, 0.4. Integration 
from h to z gives 

z 2 h .  

The flow in the inner layer is driven by the stress im- 
posed at  the interface and may be modeled as an extension 
of the flow between parallel moving plates. The problem 
of turbulent Couette flow between two parallel plates 
moving in opposite directions was studied by Reichardt 
(1956). The (constant) stress in the flow was expressed 
as the sum of a turbulent and laminar term in the form of 

where p is the molecular viscosity of the fluid and A is an 
eddy viscosity that vanes with distance from the walls. 

The current model of canopy flow treats the shear flow 
between the moving interface and stationary ground sur- 
face. The momentum imparted to the interfacial surface 
by the upper flow is transferred in turn to the lower flow. 
Conditions at  the interface are continuity of velocity, 
mixing length, and stress. At the lower surface, mixing 
length approaches zero. 

I n  treating turbulent Couette flow, Reichardt used a 
parabolic distribution of eddy viscosity. An equivalent 
formulation, after using mixing length, will lead to  a 
similar profile for I. Therefore, we hypothetically propose 
the following expression for mixing length: 

I= r E-( z - y ] + S Z  = - r2+  (hr+s) z (12) 

where h is canopy height, r and s are parameters; r 
determines the maximum value for I, and s insures 
continuity of I a t  the interface. 

The flow in the inner layer is described by eq (8). 
Substituting the mixing length expression (eq 12) and 
integrating, we obtain 

F’rom eq (12) we see that r and s are introduced as 
descriptors of the mixing length. The parameter s may 
be viewed as a secondary surface roughness and is related 
to  the canopy density. The range of s values, as seen from 
the limiting cases, is 0 to 0.4 (von E&rm&n’s constant). 
The other parameter T represents the maximum value of 
the parabolic term for canopy mixing length. The lower 
limit for r is zero (no canopy). I ts  upper limit, from 
dimensional and physical reasoning, should be on the 
order of the inverse of the canopy height. 

The behavior of r can be approached through dimen- 
sional analysis. We make the hypothesis that r depends 
on canopy density, A-’ . (length-’) ; mean wind speed, 
U (length time-’); and turbulent pelocity, u (length 
time-’). Then we obtain 

We know lim A=1 and lim &=O,  but the remaining 

properties of C$ must be determined empirically. Similar- 
ly, dependence of s on the mean wind shear aU/az, A, 
and U can be postulated; and we obtain 

A 4  A+ - 

An interrelation is suggested by the result that sparse 
canopies imply high s and low r ,  and conversely. Simple 
functional forms that satisfy the limiting conditions 
for dependence on A are exponentials of the form 

+2 a0.4e-const~A. (16) 

Figure 1 shows the domain of T and s derived using 
assumed exponentials. 

One aspect in which our model differs from those of 
other investigators is that a maximum in the mixing length 

0 0.2 4 .6 .0 1.0 
r 

FIGURE 1.-Expected domain of velocity profile parameters rand s. 
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profile lies within the canopy. Previous theories postulate 
a mechanical breakdown of turbulent eddies leading to a 
nearly uniform mixing length within the canopy. At this 
point, we should remember that mixing length is a param- 
eter of one theory of turbulent transport. In a sense, the 
mixing length implies an efficiency of turbulence transport 
by all available processes. If the environment induces a 
new turbulent transfer mechanism, this would be reflected 
in the mixing length parameter. Hypotheses on the 
parameter made without considering all the physical 
mechanisms could then be in error. 

The vegetative canopy environment is capable of pro- 
ducing many aerodynamic effects besides the often- 
considered ones of frictional drag and mechanical eddy 
breakdown. One such effect noted by Yano (1966) is that 
a cylinder of finite length placed in a flow gives rise to  a 
distinctly three-dimensional wake. The velocity deficit in 
the lee of the obstacle is countered by momentum trans- 
port, not only normal, but also parallel to the axis. The 
effect of flow over the end of a cylindrical obstacle is 
likely to  be greater if the cylinder projects from a wall into 
a shear flow, as in the case of a tree in the atmosphere. 
Yano also finds the effect to carry over to an ensemble of 
elements. 

SUMMARY 

The modeling of canopy flows almost certainly necessi- 
tates the consideration of interaction between two regimes. 
In the steady, horizontally homogeneous case, the inter- 
action can be handled by matching solutions for the two 
layers at  the interface. In the present model, we have 
proposed an interaction of a boundary layer flow with a 
turbulent Couette flow and have been able to produce 
the main features of observed canopy wind fields. Perhaps 
the most important point is that we were able to  derive 
the model equations directly from the governing equations, 
assuming only the mixing length parameter of turbulent 
exchange. A test of this assumption, using the energy 
balance equation, was favorable. 

Although we have been able to  suggest theoretical de- 
pendencies of r and s on canopy density and wind speed, 
the test of the model will come from future empirical 
validation. Figure 2 shows sample profiles for several com- 
binations of parameters. We do not intend, however, to 
stress the curve-fitting abilities of the profiles. The model 
is primarily designed to provide a boundary condition for 
the transition zone model discussed in the next section. 
It satisfies the same governing equations and describes the 
velocity field in terms of simple functions. Its immediate 
use, then, is as a theoretical tool to explore a more complex 
wind field. 

3. TRANSITION ZONE MODEL 
The assumption of parallel flow, which is quite valid 

for modeling the flow in the uniform zone, does not hold 
in the transition zones near the upwind and downwind 
edges of a canopy. Field and laboratory observations all 
show significant vertical motions in these regions. 
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FIGURE 2.-Sample velocity profiles for equilibrium canopy flows. 

For studying the properties of flow in the transition 
zones, a two-dimensional model has been developed. I n  
formulating the model, we begin with the vorticity equa- 
tion obtained by subtracting the z derivative of eq (3) 
from the z derivative of eq (2). We assume steady flow of 
homogeneous, incompressible fluid. The resulting form of 
the continuity equation is 

au aw 
ax a2 
-+-=O. (17) 

Also, we assume that viscous effects are negligible com- 
pared with Reynolds stresses. Hence, in addition to the 
continuity equation, the equation governing the flow is 

If we adopt the mixing length hypothesis to relate the 
Reynolds stress to the mean velocity profile, we get 

Empirical evidence suggests that the first term on the 
right-hand side of eq (18) may be small compared with 
the other terms. I n  the present model, it  will be neglected. 

The continuity equation can be incorporated into the 
vorticity equation through the use of a stream function 
defined such that 

When we make these changes in eq (18), we obtain 

(21) 
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and as a consequence of the definitions of + and {, 

Equations (21) and (22) make up a nonlinear set of partial 
differential equations that may be solved subject to a set 
of boundary conditions. Because of the nonlinearity, the 
equations must be solved by numerical methods. 

A two-layer model has been set up in which the lower 
layer represents the region below the canopy top and the 
upper layer represents the outer flow. The boundary con- 
ditions at  the ends of the regions are the vorticity and 
stream function corresponding to the parallel flows for 
the upwind and downwind environment. That is, for the 
leading edge transition, the upstream conditions are con- 
sistent with the logarithmic velocity profile; and the 
downstream conditions are represented by the canopy 
flow discussed in the previous section. At the downstream 
edge, the end conditions are reversed. At z=zo, the lower 
boundary conditions are 

W=O, U=O, and+=O 

where zo is a specified surface roughness parameter. At the 
top of the upper region, + is specified; and at  the interface 
between the two layers, the solutions are matched by re- 
quiring that shearing stress and stream function be 
continuous. 

It is seen from the previous section that the parameters 
determining both the upstream and downstream uniform 
flows are Z(z), u,, and zo. A requirement in the model is 
the specification of Z(z,z) and zo(z) across the transition 
zone. The shear stress at  the lower surface must also be 
specified. I n  the absence of definitive information on the 
variation of these parameters in a transition zone, it was 
decided to vary them smoothly from one equilibrium 
value to the other. A weighting function is defined for 
this purpose as 

(23) 
1 A(z)=Z [l-tanh (bz+c ) ]  

The parameter b allows a variation in the width of the 
mixing length transition zone, while c merely places the 
zone in the desired portion of the grid network. Dimen- 
sionally, b should be related to the inverse of the spacing 
between roughness elements with a suggested propor- 
tionality constant of about 0.4. 

FINITE-DIFFERENCE GRID 

The grid upon which the calculations are performed 
consists of two separate units, 11 grid points vertically 
by 21 grid points long, placed one above the other. The 
values of the variables in the bottom row of the upper 
grid are set equal to those on the top row of the lower 
grid. The spacing of the grid points can be varied, but 
useful values were found to be z=O.l h, x=5 h where h 
is the canopy height. 

NUMERICAL PROCEDURE 

The procedure for solving the set of eq (21) and (22) 
can be outlined as follows. 

1. Define the end boundary conditions using eq (10) 
and (13) with the desired parameters. Note that the 
equations are expressed in dimensionless form, the scaling 
parameters being u* for velocity and h for length. 

2. Express initial estimates of the variables +, { and 
calculate mixing length across the grid in terms of the 
end quantities weighted by A(x). 

3. Calculate the left-hand side of eq (21) for each in- 
terior grid point from the current estimates of +, { using 

(25) 

by a marching procedure 

5. Calculate az+/i3zz from cp by 

where sgn(cpf,,) has the value + 1  or -1  depending on 
the sign of pi.,,. 

6. Calculate + from the values of a"+/az2 and upper and 
lower boundary conditions on +. The Liebmann sequential 
overrelaxation method (Thompson 196 1) is applied sepa- 
rately for each x value. 

7. The next step in the procedure is to update the bound- 
ary conditions on the interface between the two layers. 
This is necessary to  allow the interacting flows to develop 
without too many artificial constraints. 

8. The interior { values are calculated from the J. field 
by the equation 

9. Return to step (3). Steps (3) through (8) are repeated 
until the convergence criterion is reached. 
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DISCUSSION OF ACCURACY, TRANSITION ZONE MODEL 

The question of accuracy in the transition zone model 
is mainly that of numerical errors and the approximations 
in the defining equations. 

Major restrictions in the model are the assumptions 
made in deriving the governing equations, and the most 
severe of these is the neglect of a horizontal eddy viscosity. 
It should be recalled that, in deriving eq (21) ,  we assumed 
that stress was approximated by PI (i3Uja.z) 1 (dU/dz) 
and neglected turbulent transport arising from horizontal 
velocity gradients. This is tantamount to assuming that 
horizontal variations in wind speed are negligible in com- 
parison with vertical variations. While this is rigorously 
true of horizontal flows, it is only approximate in the 
transition zone. The extent of approximation is difEcult 
to judge due to the lack of information on the horizontal 
mixing properties but may be estimated by means of 
scale analysis. If we assume the total stress to be given 
by two components, horizontal and vertical, we can re- 
write eq (21) as 

Take the characteristic scales, velocity= U, horizontal 
length=& vertical length= X. Further assume O(Z,) = 
O(Z,)=X. Then, expressing the terms of eq (29) as scaled 
quantities and simplifying, we obtain the magnitudes 
of the terms: 

1 x 3  

L3 
L 

E L x 
- x - x 

We simplify notation; thus I lLZZl ItZz=cpz, and similarly for 
cpz.  The last two terms on the right-hand side are retained 
in the present model, while the first two are neglected. 
The ratio of the first to the fourth term on the right is 
h4/L4, while the ratio of the second to the fourth term is 
x2/L2. Typical values of X/L for transition zone calculations 
are between 0.25 and 0.01. We can see from this that the 
errors introduced by neglecting horizontal mixing can 
approach 6 percent for narrow transition zones but remain 
negligible for wide zones. 

The other term neglected from eq (18) was (#/a&) 
(2-3) that depends on the spatial variation of 2 and 
3. From empirical observation, the total change in 
(7-3) from inside to  outside the canopy is on the order 
of 0.2 u*. Scaling the term by characteristic length scales 
and comparing it with the above, we find a ratio of 0.2 
AIL that suggests errors of 5 percent and less introduced 
by neglect of this term. 

The various numerical subprocedures each have accu- 
racy limits; but in general, they may be kept to a desired 
level well within the tolerances set up by the assumptions 
in the governing equation. The biggest numerical error 
is the truncation error associated with the finite-difference 
estimate of derivatives. This is done in the calculation of 
the Jacobian term in step (3) and in step (8), which is 
the calculation of the vorticity from the stream function. 

ATHER REVIEW Vol. 99, No. 6 

Typical bounds on this error are 0.3 percent per iteration. 
Although the truncation errors for a single iteration are 

relatively small, they have a cumulative effect; and there 
is some point a t  which the truncation error will limit the 
convergence of the scheme. This is best determined by 
analyzing the convergence criteria from step to step. The 
criteria selected were the maximum changes in { and # 
over the entire grid from one iteration to  the next. The 
general pattern is a decrease in these changes for about 
20 iterations after which they level off or increase. This 
behavior was interpreted as the influence of accumulated 
truncation error, and the procedure was stopped a t  this 
point. Another test was made on the stability of the 
solutions. The results for the case b = a  were compared 
after 20 and 40 iterations and were found to differ only 
in minor aspects. Maximum $ differences were approxi- 
mately 5 percent between the two patterns. 

In  summary, the transition zone model must be con- 
sidered an approximation with expected errors I#esc-$[/l#l 
on the order of 6 percent for sharp transitions and less 
than that for broad transition zones. 

TRANSITION MODEL RESULTS 

The transition zone model has been applied to  a typical 
case. The boundary condition for canopy flow is given by 
eq (10) and (13) with parameters zo=O.Q1 h, s=0.01, 
r=1.0. The outer flow boundary conditions are expressed 
by the familiar logarithmic velocity profile 

with parameters zo=0.01 h, V(z,) =O. The stream function 
was maintained essentially constant at  the top row of the 
grid giving horizontal flow there. This requirement has a 
damping effect on vertical motions generated within the 
grid. 

Calculations were performed for a wide range of values 
of the parameter b and represent transition zone widths 
from 1 to 100 times the canopy height. Figures 3 and 4 
show the computed streamlines for b=0.5 and rn at the 
leading edge of a canopy. I t  can be seen that, as the 
transition becomes sharper, the pattern of vertical motions 
becomes more distinct. One of the more striking features 
of the results is the large downstream distances at  which 
the windward edge effects are still present. Regardless of 
the value of b, effects are noticeable at  50 to 60 canopy 
heights downwind. 

The patterns in figures 3 and 4 will be described briefly 
to point out important features. The flow above h/2 rises 
at  or slightly downstream from the leading edge. The 
steepness of this rise depends on b.  At s=15  h, there is a 
peak; and t.he streamlines dip back down, reaching a mini- 
mum at z=25  h to  30 h. The vertical motions are most 
distinct just above the top of the roughness elements. 
Beyond the dip, there is another wave of slightly smaller 
amplitude with the second dip a t  50-60 h. This pattern is 
superimposed on a set of streamlines that rises smoothly 
from upstream to downstream end conditions. Meanwhile, 
in the lower half of the canopy, the flow does not rise a t  the 
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FIGURE 3.-Leading edge streamline pattern, b= 0.50. 

FIGURE 6.-Streamlines based on observed data presented by 
Stearns (1964), case of Mar. 11, 1964. 
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FIQURE 4.-Leading edge streamline pattern, b= m (step change). 
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FIQURE 7.-Streamlines based on observed data presented by 
Stearns (1964), case of Mar. 12, 1964. 

leading edge but rather sinks to a weak minimum at about 
5 = 5 h before conforming to a much damped version of the 
pattern described above. Streamlines for the downwind 
edge are shown in figure 5 for b = l . O .  In  general, the 
trailing edge flow is smoother than that a t  the leading 
edge. The main features are a downward slope to the 
streamlines for all b (not shown); but at high b values 
(i.e., b=l .O) ,  a superposed wave creates a dip followed by 
a peak just prior to the trailing edge. No significant down- 
stream effects occurred in the calculations. 

Theie are several sources of empirical data available for 
comparison with the model, although all are from finite- 
length canopies, and hence not strictly comparable. 
Stearns (1964) measured velocity profiles at  several dis- 
tances across a model canopy in the atmosphere. Stream 
functions were calculated from Stearns’ winds, and the 
streamline patterns subsequently dexived are shown in 
figures 6 and 7. Recently, Meroney et al. (1968) and Eawa- 
tani and Meroney (1968) reported similar results from wind 
tunnel simulations for forest canopies that included stream- 
line patterns, 
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Agreement between the characteristics of the computed 
and observed streamlines is quite striking. I n  both em- 
phical sets, the sharpest rise occurs slightly downwind of 
the edge of the canopy. Beyond this, there is a tendency 
for the flow to return to horizontal or actually curve 
downward. Stearns’ model is likely too short to observe 
downstream effects, but the wind tunnel canopy (not 
shown) indicates a dip about z=25 h, which is most dis- 
tinct near the canopy top. A second, much weaker node 
appears at  z=60 h to 70 h. For sparser canopies, the wave 
effect observed by Meroney et al. (1968) is of smaller 
amplitude with a suggestion of longer wave length. The 
wave pattern in the wind tunnel streamlines is supeI- 
imposed on a mean pattern. Rather than leveling off the 
streamlines continue to rise along the entire length of the 
model. This suggests a continued downwind pressure 
change within the model. As the trailing edge is ap- 
proached, there is a final wave-type deflection in the flow 
and indications of a downward motion behind the canopy. 
Stearns’ data show the same effect at the downwind 
edge-a remarkable agreement with figure 5.  Quantitative 
comparison with the observations of Kawatani and 
Meroney is obtained for the leading edge streamlines. 
Since the boundary conditions in the numerical model are 
slightly different from those of the wind tunnel experi- 
ments, the magnitudes of the streamline deflections differ. 
The two data sets were reduced to the same scale through 
normalization by the total height deflection of the stream- 
line between upwind and downwind boundaries. Ob- 
served data points reduced in this manner are included in 
figure 4 for two typical streamlines. The agreement above 
the canopy top is remarkable for all distances. Within the 
canopy, although the wave length is the same, the ob- 
servations show a greater amplitude in the initial rise. 

Another minor feature is the splitting effect in which 
the flow entering the lower portion of the canopy sinks 
instead of rises. This phenomenon is a pertinent one for 
prototype applications and has been observed in the 
diffusion of suspended material. Raynor (1967) shows 
concentration measurements from a tracer released 
upstream of a forest. There is a distinct splitting of the 
cloud as the portion that enters the canopy close to the 
ground stays there while that entering higher tends to 
rise. The splitting of the flow is also very evident in veloc- 
ity profiles taken in the field. The results of virtually 
all mean wind profile measurements in upwind canopy 
transition zones show a weak maximum within the 
canopy. Associated with this is a tendency for jetting 
above the roughness elements. Although no maximum 
may occur, the effect shows up as a zone of strong velocity 
shear between zero and 10 h units downstream of the 
leading edge. The shear region diminishes further down- 
wind. 

To compare these effects with the model results, we 
calculated the horizontal and vertical velocity com- 
ponents from the stream function by means of the defining 
eq (20) .  The profiles of horizontal velocity U for two b 

FIQURE 8.--Mean velocity profiles at several distances from a 
canopy leading edge. 

values have been selected for discussion. The case of 
sharpest transition (fig. 8) shows the effects most clearly. 
There is a slight tendency toward velocity increase in the 
lowest one-tenth of the canopy very near the leading 
edge. Meanwhile, a distinct jet forms just above the 
canopy top. These effects disappear by the next column 
of grid points, 5 h downstream. The same phenomenon 
occurs a t  the next downstream node as is shown by 
profiles at z=32 h and 2=37 h. The profles for B=0.5 
(fig. 8)  show a strongly diminished tendency for the 
formation of jets, although the effect can still be seen. 
The U profiles at  the downwind edge do not display the 
jetting effects. 

The transition model has been derived to explain the 
two-dimensional effects in the wind variation near the 
edges of canopies. The practical requirements for this 
type of information are important since most natural 
,sites are subject to edge eeects. 

Through a systematic approach beginning from the 
basic equations, we have been able to estimate the 
errors involved in the simplifying assumptions and 
numerical procedures. The model quite adequately 
describes several observed phenomena associated with 
transition zone flow including wave and splitting effects. 
In  addition, the results suggest the presence of features 
not observed. The long downwind distances at  which 
leading edge influences appear is notable, although not 
really surprising. A second wave suggested by the calcu- 
lations may have minor practical implications but 
represents a significant aspect of the fluid mechanics. 

4. SUMMARY AND CONCLUSIONS 

The development of a model for flow in the transition 
regions of vegetative covers is vital for almost every 
practical application depending on wind and turbulence 
structure. Edge effects appear to penetrate far enough 
into interior regions, so that examples of perfectly uniform 
canopy flow are scarce. Our approach to a transition model 
has been first to establish a model for a uniform cover 
that is consistent with the equations governing the two- 
dimensional transition flow. It was shown that the 
traditional model (eq 1) implies a complex height de- 
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pendence of pressure, whereas the Reynolds equations 
of motion for the same regime allow no more than a 
linear variation. A uniform canopy model was developed 
from the equations of motion, making use of mixing 
length theory and a hypothesis of two-layer flow inter- 
action. 

The uniform model provided a boundary condition for 
the two-dimensional steady nonlinear transition flow 
obtained numerically. Several simplifying assumptions 
have been made in the transition zone model. Although 
the effects have been estimated to be an order of magnitude 
less than the included effects, the role of these terms will 
be examined in later models. The neglected processes 
include horizontal mkiig,  vertical variation of turbulence 
anisotropy, and, of course, the role of the third (lateral) 
dimension. Also, further experiments on upper boundary 
conditions are necessary to make this a practical model. 

The simplified model yielded several interesting flow 
features that verified well against observation when 
adjustments for differing boundary conditions were made. 
Features such as a splitting of the flow at the leading edge 
with a weak velocity maximum within the canopy occur 
in both the calculations and observations. Also, a standing 
wave in which the air is forced up a t  the canopy edge 
and dips back into the cover some distance downwind 
verifies semiquantitatively with wind tunnel data. 

A logical use of the model is in the study of transport 
and diffusion of suspended material in the canopy en- 
vironment. In addition to the two-dimensional transport 
obtained directly, the momentum diffusivity implied in 
the model design can be extended to include turbulent 
transfer of scalar quantities. Also, the use of models in 
the design of experiments and field studies frequently 
leads to more meaningful experimental results. 

ACKNOWLEDGMENTS 

I am grateful to  Dr. S. -K. Kao of the University of Utah for 
his helpful suggestions and discussions. 

REFERENCES 

Allen, Luther H., Jr., “Turbulence and Wind Speed Spectra Within 
a Japanese Larch Plantation,” Journal of Applied Meteorology, 
Vol. 7, No. 1, Feb. 1968, pp. 73-78. 

Baynton, Harold W., Biggs, W. Gale, Hamilton, Harry L., Jr., 
Sherr, Paul E., and Worth, James J. B., “Wind Structure in and 
Above a Tropical Forest,” Jocrnal of Applied Meteorology, Vol. 4, 
No. 6, Dec. 1965, pp. 670-675. 

Cionco, Ronald M., “A Mathematical Model for Air Flow in a 
Vegetative Canopy,” Journal of Applied Meteorology, Vol. 4, No. 

Inoue, Eiichi, “On the Turbulent Structure of Airflow Within Crop 
Canopies,” Journal of the Meteorological Society of Japan, Ser. 2, 
Vol. 41, No. 6, Tokyo, Dee. 1963, pp. 317-326. 

4, Aug. 1965, pp. 517-522. 

Kawatani, Takeshi, and Meroney, Robert N., “The Structure of 
Canopy Flow Field,” Technical Report, Grant No. DA-AMC-28- 
043-65-020, Fluid Dynamics and Diffusion Laboratory, Colorado 
State University, Ft. Collins, Aug. 1968, 122 pp. 

Lemon, Edgar R. (Editor) et al., The Energy Budget at the Earth’s 
Surface: Part I I .  Studies at Ithaca, N.Y. ,  1960, Production Research 
Report No. 72, U.S. Agricultural Research Service, Ithaca, N.Y., 
Sept. 1963, 49 pp. 

Meroney, Robert N., “Characteristics of Wind and Turbulence in 
and Above Model Forests,” Journal of Applied Meteorology, Vol. 7,  

Meroney, Robert N., Kesic, D., and Yamada, T., “Gaseous Plume 
Diffusion Characteristics Within Model Peg Canopies: Task I I B  
Research Technical Report, Deseret Test Center,” Technical 
Report ECOM-C-0432-1, Contract No. DAAB07-68-C-0423, 
U.S. Army Electronics Command, Ft. Monmouth, N.J., Sept. 
1968, 70 pp. 

Morton, John, “Subtropical Rain Forest Diffusion Study,” paper 
presented a t  the American Meteorological Society Conference on 
Fire and Forest Meteorology, Salt Lake City, Utah, Mar. 12-14, 
1968. 

Plate, E. J.,-and Quraishi, A. A., “Modeling of Velocity Distribu- 
tions Inside and Above Tall Crops,” Journal of Applied Meteor- 
ology, Vol. 4, No. 3, June 1965, pp. 400-408. 

Raynor, Gilbert S., “Effects of a Forest on Particulate Dispersion,” 
Proceedings of the U.S.  Atomic Energy Commission Meteorological 
Meeting, Chalk River Nuclear Laboratories, Ontario, Canada, 
September 11-14, 1967, Atomic Energy of Canada, Ltd., Ontario, 

Reichardt, Hans, “Uber die Geshwindigkeitsverteilung in Einer 
Geradlinigen Turbulenten Couette Stromuing” (On Velocity 
Distribution in Rectilinear Turbulent Couette Flow), Zeitschrift 
fur Angwandte Mathematilt und Mechanik, Vol. 36 Supplement S, 
Berlin, Germany, Sept. 1956, pp. S-26--5-29. 

Shinn, Joseph H., “Air Flow in the Tree Trunk Region of Several 
Forests,’, paper presented at the National Meeting of the 
American Meteorological Society With the Pacific Division, 
American Association for the Advancement of Science, Logan, 
Utah, June 26-28, 1968. 

Stearns, Charles R., “Report on Wind Profile Modification Ex- 
periments Using Fields of Christmas Trees on the Ice of Lake 
Mendota,” Annual Report, Contract No. DA-36-039-AMG 
00878, Department of Meteorology, University of Wisconsin, 
Madison, June 1964, 115 pp. 

Tan, H. S., and Ling, S. C., “Quasi-Steady Micro-Meteorological 
Atmospheric Boundary Layer Over a Wheatfield,” The Energy 
Budget at the Earth’s Surface: Part N .  Studies at Ithaca, N.Y., 
1960 Production Research Report No. 72, Agricultural Research 
Service, Ithaca, N.Y., Sept. 1963, pp. 7-12. 

Thompson, Philip Duncan, Numerical Weather Analysis and Predic- 
tion, Macmillan Co., New York, N.Y., 1961, 170 pp. 

Uchijima, Zenbei, and Wright, James L., “An Experimental Study 
of Air Flow in a Corn Plant-Air Layer,” Bulletin of the National 
Institute of Agricultural Sciences, Ser. A, Vol. 11, Tokyo, Japan, 
Feb. 1964, pp. 19-65. 

Yano, Motoaki, “Turbulent Diffusion in a Simulated Vegetative 
CoverlJJ Technical Report, Grant No. DA-AMC-28-043-65-GZ0, 
Department of Civil Engineering, Colorado State University, 
Ft. Collins, May 1966, 149 pp. 

NO. 5, Oct. 1968, pp. 780-788. 

1967, pp. 581-588. 

[Received May 16, 1970; revised August 5, 19701 


